Question	Answer	Mark	
Number			
1 (a)	Radial lines (at least 4) most touching nucleus but not going		
	through it (straight by eye) (1)		
	Equispaced (1)		
	Arrow pointing away from circle (1)) 3	
1(6)(;)	$E = 0.0 / 4\pi a^2 \text{ ar } E = 1.0 0 - a^2$ (1)	<u> </u>	
1(0)(1)	$F = Q_1 Q_2 / 4\pi \epsilon r \text{ or } F = \kappa Q_1 Q_2 / r $ (1) Charges are 70 × 1.6 × 10 ⁻¹⁹ and 2 × 1.6 × 10 ⁻¹⁹ (1)		
	Charges are 1.23×10^{-17} and 2.2×10^{-19} (1)) 2	
	(values are 1.25 x 10 and 3.2×10)		
1(b)(ii)	Marks can be scored for use of symbols cell annotation or		
-(~)()	values		
	$F = \Delta p / (\Delta) t \tag{1}$)	
	$(\Delta)v = (\Delta)p/m \tag{1}$		
	$(-)B5 \times C5 $ (1))	
	$(D5) = D4 + \frac{C}{6.64 \times 10^{-27}}$		
	$(-)^{20} 2 \times 1 \times 10^{-21}$		
	$(D5) = 1.24 \times 10^7 + \frac{(-)20.2 \times 1 \times 10}{6.64 \times 10^{-27}} \qquad F/m = (-) \ 3.04 \times 10^{27}$		
	0.04×10		
	OR		
	$a = F/m \tag{1}$		
	$ \begin{array}{c} u \\ v = (u) + at \end{array} $		
	(1)	3	
	$(D5) = D4 + \frac{(7)^{-27}}{6.64 \times 10^{-27}}$		
	$()20.2 \times 1 \times 10^{-21}$		
	$(D5) = 1.24 \times 10^7 + \frac{(-)20.2 \times 1 \times 10}{6.64 \times 10^{-27}} \qquad F/m = (-) \ 3.04 \times 10^{27}$		
	6.64×10 ⁻⁴		
1(b)(iii)	$s = \frac{1}{2}(u+v) t$ accept $s = vt$ (with either D5 or D6)		
1(5)(11)	\mathbf{Or}		
	$s = ut + \frac{1}{2}at^2$ (1))	
	$(s) = \frac{1}{2} (D5 + D6) * C6$ or value or other correct equations (1)	2	
1 (b)(iv)	Value in range 2.00 - 2.49(x 10^{-14} m) (1)) 1	
* 1(c)	(QWC- Work must be clear and organised in a logical manner using		
	technical wording where appropriate.)		
	Atom mainly <u>empty</u> space (1)		
	Charge is concentrated in the centre/in a nucleus/nucleus is charged (1)		
	Mass is concentrated (at the centre) Or Dense/massive nucleus (1)) 3	
	Total for guestion	14	
		14	

Question	Answer	Mark
Number		
2 (a)	(Magnetic) force acts at right angles to ion motion/current (1)	
	Force is the centripetal force or causing centripetal acceleration or	
	direction of acceleration/force is to centre (of circle) (1)	2
2 (b)	See $F = BQv$ or $r = p/BQ$ (1)	
	$F = mv^2/r \text{ or } p = mv \tag{1}$	
	$f = v/2\pi r \text{ or } f = \omega/2\pi \text{ or } T = 2\pi r/v \text{ or } T = 2\pi/\omega$ (1)	3
2 (c)(i)	Identifies positive (field) above and below (the ion) (1)	
	which repels the ion (1)	2
2 (c)(ii)	$3 \times 32.0645 / 10 \text{ x} (10^6)$ (1)	
	$= 0.0000096(u) \tag{1}$	2
2 (c)(iii)	Convert MeV to J (1)	
	Convert J to kg (1)	
	Convert kg to u (1)	
	Mass loss = $0.0024(u)$ (and this is more than $0.00001u$) (1)	4
	Example of calculation	
	mass $\hat{l}oss = 2.2 \text{ MeV x} 1.6 \text{ x} 10^{-13} \text{ J}$	
	J to kg $3.52 \times 10^{-13} / 9 \times 10^{16}$ kg	
	kg to $u 3.91 \times 10^{-30} / 1.66 \times 10^{-27} u$	
	Total for question	13

Question	Answer		Mark
Number			
3(a)	To prevent interaction/deflection/collision of the alpha particle with the air. [do not accept: 'don't get in the way', 'cause ionisation', 'interfere with'. Looking for a definite interaction between the alpha and the air molecules. Accept air particles]	(1)	1
3 (b)	TWO Nucleus (very) much smaller than separation of nuclei Or nucleus (very) much smaller than the atom	(1)	
	Nucleus is charged (don't penalise if candidate says positively charged)	(1)	
	Nucleus is (very) dense Or nucleus is massive Or nucleus contains most of the mass	(1)	2
	(no credit for candidates referring to the atoms and not the nucleus.)		
3 (c)	ParticlePath curves up with less deflection than for particle shown and must cross the printed line.Or a straight path.	(1)	
	Bottom Particle Path curves up with more deflection than for particle shown Greatest curvature before greatest curvature of particle shown. (dependent mark)	(1) (1)	3
	Example		
	Total for question		6

Question	Answer		Mark
Number			
4(a) (i)	Use of $\lambda = h/p$ and $p = mv$ Or $v = h/m\lambda$	(1)	
	Use of $m = 9.11 \times 10^{-51}$ kg	(1)	
	$v = 7.28 \times 10^{6} \text{ m s}^{-1}$	(1)	3
	Example of calculation		
	$\lambda = h/mv$		
	$v = 6.63 \times 10^{-34} \text{ J s} / (9.11 \times 10^{-31} \text{ kg} \times 1.0 \times 10^{-10} \text{ m})$		
	$v = 7.28 \times 10^6 \mathrm{m s^{-1}}$		
	A		
4(a) (ii)	Use of $E_{\rm k} = \frac{1}{2} mv^2$ Or $E_{\rm k} = \frac{p^2}{2m}$ Or see $E_{\rm k} = 2.41 \times 10^{-17} {\rm J}$	(1)	
	Divided by 1.60×10^{-19}	(1)	
	$E_{\rm k} = 151 \text{ eV}$ (accept values in range $150 - 152 \text{ eV}$)	(1)	3
	(ecf value of v from (a))		
	Example of calculation		
	$E_{\rm k} = \frac{1}{2} (9.11 \times 10^{-51} \text{kg}) (7.28 \times 10^{6} \text{m s}^{-1})^{2} / (1.60 \times 10^{-19} \text{J eV}^{-19})$		
	¹)		
	$E_{\rm k} = 151 {\rm eV}$		
4(b)	The wavelength is similar in size to the nucleus	(1)	
			•
	The wavelength /nucleus is (much) smaller / 10^{-13} m / 10^{-14} m	(1)	2
	(if value is not given, 'wavelength is small' or 'wavelength is		
	very small' is not sufficient)		
			0
	Total for question		8

Question Number	Answer		Mark
*5	(QWC – Work must be clear and organised in a logical manner using technical wording where appropriate)		
	Max 5 Observations:		
	Most alpha went straight through	(1)	
	Very few came straight back Or very few had a deflection $> 90^{\circ}$ Or 1 in 8000 came straight back	(1) (1)	
	(Do not credit responses in terms of 'bounced' or 'reflected'.)		
	Conclusions: <u>Atom</u> mainly <u>empty</u> (space) Charge is concentrated in the centre/in a nucleus/nucleus is charged	(1) (1)	
	Mass is concentrated (at the centre) Or dense/massive nucleus	(1)	Max 5
	Total for question		5

Question	Answer	Mark
6(a)	Observations:Most alpha went straight through / undeflected(1)[Do not credit just "alphas go through"](1)Some / few deflected[not "reflected](1)Very few / < 1 in 1000 came straight back / were deflected through very large angles (>90°) / were reflected(1)	3
6(b)(i)	Any mention of tubes(1)Alternating p.d. / a.c. p.d. /alternating electric field(1)Length of tubes increases(1)	3
6(b)(ii)	Use of $p = E/c$ with $c = 3 \times 10^8$ (1) (Use of de Broglie) $\lambda = h/p$ with $h = 6.6 \times 10^{-34}$ (1) wavelength = 6.2×10^{-17} m (1) Example of answer $p = 20 \times 1.6 \times 10^{-10}$ J / 3 x 10 ⁸ m s ⁻¹ = 1.1 x 10 ⁻¹⁷ N s Correct sub of h and p i.e. $\lambda = 6.6 \times 10^{-34} / 1.1 \times 10^{-17}$ N s	3
6(b)(iii)	Wavelengths need to be smaller than nuclei[allow same as / similar to – must be comparative](1)	1
6(b)(iv)	Proton is not uniform / has space(1)Contains quarks(1)[ignore any reference to charge](1)	2
6 (b)(v)	Kinetic energy is not conserved(1)[K.E. and momentum not conserved – do not credit]	1
	Total for question	13

7(i)	В
7(ii)	C